App Inventor + loT:
Proximity Sensor (with loT Setup and Basic

Connection tutorials completed)

This tutorial will help you get started with App Inventor + IoT and a proximity
sensor on an Arduino 101 controller. We are also using a Seeed Grove shield for
this tutorial. You do not need to use this board, but it does make things easier.
The proximity sensor we recommend is the Grove Infrared Proximity Sensor.

Before you start you should first complete the App Inventor + [oT Setup tutorial to
set up your Arduino device.

e Connect the proximity sensor
to the Grove board in the AO
pin connector. >
e For this tutorial make sure
-PROXIMITY is set to
ENABLED and all others are
set to DISABLED.
e | You should also click the arrow
button in the top left to upload
the code.

AIM-for-Things-Arduino101 | Arduino 1.8.1

AIM-for-Things-Arduinol01 §

1 #define NAME "App Inventor" // no more than 11 characters

2 #tdefine DEBUGGING ENABLED
3

4 #define ACCELEROMETER DISABLED
5 #define BUTTON DISABLED
6 #define CAMERA DISABLED
7 #define CONSOLE DISABLED
8 #tdefine FINGERPRINT DISABLED
9 #define GYROSCOPE DISABLED
10 #define LED DISABLED

11 #define LIGHT_SENSOR DISABLED
12 #define MOISTURE_SENSOR DISABLED
e ———— BEGHBi=ER

—> 14 #define PROXIMITY ENABLED
1S fdofine DWM DISARLED
16 #define RGBLCD DISABLED
17 #define SERVO DISABLED
18 #define SOUND_RECORDER DISABLED
19 #define TEMPERATURE DISABLED

20

21 // frequency to read sensor values in ps

22 const unsigned long SENSOR_UPDATE_FREQ = 50000;

23 const unsigned long IMU_READ_FREQ = 5000;

24 const double IMU_FILTER_ALPHA = 0.5; //Alpha for accelerometer low pass filter
Z5

26 unsigned long nextSensorUpdate;

27 unsigned long nextIMURead;

28 double dt;

29

30 const uint8_t BITS[8] = { @x01, 0x02, Ox04, 0x08, 0x10, Ox20, 0x40, Ox80@ };
31 const uint8_t MASK[8] = { @xFE, OxFD, OxFB, OxF7, @OxEF, @xDF, OxBF, Ox7F };
32

33 #include "common.h"

https://www.arduino.cc/en/Main/ArduinoBoard101
https://www.seeedstudio.com/Base-Shield-V2-p-1378.html
https://www.seeedstudio.com/Grove-80cm-Infrared-Proximity-Sensor-p-788.html
http://iot.appinventor.mit.edu/assets/tutorials/MIT_App_Inventor_IoT_Setup.pdf

Next, you should complete the App Inventor + [oT Basic Connection tutorial to
make a basic connection to the Arduino device. If you prefer, you can download
the completed .aia file here.

The remaining steps all build off of the the starter code for Basic Connection
tutorial and .aia:
e Drag a Label from the User Interface Palette and drop it between
LabelStatus and ListBLE
o Rename the Label "LabelData".
o Change its text to “Data: “.

T_| 'roximity Screen] » | Add Screen ... | Remove Sereen Designer | Bloflks
Paletfe Viewer Components Properties
Useflinterface [Display hidden components in Viewer 2 Screenl LabelData
Check to see Preview on Tablet size
Layqut 5] HarizontalArrangement 1 BackgroundColor
E 948
Medla IButtonSean [] none
Screenl
i —— JButtonStopScan FontBold
Draing and Animation
Scan Stop Scan Connect Disconnect BiittonConnedt
Senfors : Fontltalic
Status: = ButionDisconnect

" Data:
> -2 LabelStatus FontSize
ooy _ > Lobeate =

Connectivity S ListBLE FontTypeface
@& BluetoothLE1 default ~

LEGO® MINDSTORMS®
ArdulnmumxlmnySem HTMLFormat

Experimental
Extension HasMargins
54
import extension
Height
Automatic...
& Arduinol 01Button 7 Width
Al i
@ Arduino101Gyroscope ? sl
@ ArduinolDTHumidy 7 nanas] Lods 1]
Data: <
Arduino107Led
Media TextAlignment
Arduino101LightSensor (7 Mon-visible components left: 0«
y @ Upload File
& Arduinol01Moisture 5 Texicolor
BluetoothLE1 Arduinol101ProximitySensor] l Black
Arduino101PWMMotor (7
Visible
]

@ Arduinol01Pins

ldulncﬂ 01ProximitySensor

@ RraumoToTHobCa B

- o | In the Palette window, click on Extension at the bottom and then on
"Import extension" and click on "URL".

o Paste in this URL:
http://iot.appinventor.mit.edu/assets/resources/edu.mit.appinventor.iot.arduino101.aix

e L Add the Arduino101ProximitySensor extension to your app by dragging it
onto the Viewer.

http://iot.appinventor.mit.edu/assets/howtos/MIT_App_Inventor_Basic_Connection.pdf
http://iot.appinventor.mit.edu/assets/resources/IoT_BaseConnect.aia

Next, we need to let App Inventor know which pin on the Grove board the proximity
sensor is connected to.

Click on Ardunio101ProximitySensor1 in the Components pane.
In the Properties pane under Pin, write in the analog pin that matches the one

the proximity sensor is plugged into on the Grove board,
(in this case AO0).

@)
(@)

Viewer

Note: You only need to put the number (0), not the letter "A”.

Another note: If your sensor wires look like the picture below, note that
the yellow wire goes to the A1 pin, not A0 as you would think. Therefore,
you should type the number 1 into the Pin property setting, not O.

|_IDisplay hidden components in Viewer

Check to see Preview on Tablet size

1
Scan Stop Scan Connect Disconnect screent

Status:
Data:

g’ | =
Non-visible components

BluetoothLET | Arduino107ProximitySensorl

Components Properties
(=] Screen] Arduino101 ProximitySensor]
e HerizontalArrangement BluetoothDevice
— ButtonScan BluetoothLEL... 4_
— ButtonStopScan Bt
= ButtonConnect 2 4—

— ButtonDisconnect
*/LabelStatus
*|LabelData

SistBLE
14 BluetoothLE

Arduino] 01 ProximitySens

Rename Delete

Media

Upload File ...

Now switch to the Blocks Editor view

First, we want to request data updates when the sensor value on the Arduino
changes.

e from the Arduino101ProximitySensor1 drawer in the Blocks pane, add
call Arduino101ProximitySensor1.RequestProximityUpdates to the
existing when BluetoothLE1.Connected block you made in the Basic
Connection tutorial.

BluetoothLE1 ~
- BT W |abelStatus ~ M Text ~ BB Status: Connected [
CE8 ListBLE - M Visible - MW false -

k...ml Arduino101ProximitySensor] « Wz T =il I et 1T

Next, we need to store the data we receive from the sensor. From the Variables
drawer in the docs pane, drag an initialize global name to block and name it
"Proximity". From the Math drawer add a number block and set it to "0". We'll use
this to keep track of the sensor value.

_initialize global {5+ i1+

Let's make a new procedure to display the current readings in the LabelData when
we get new data. You can create a procedure by dragging out a purple procedure
block from the Procedures drawer in the Blocks pane. Let's rename it
updateDataLabel.
o from LabelData in the Blocks pane, add set LabelData.Text to.
o from the Text drawer connect a join block.
m From the Text drawer, connect a text block and type
"Distance: ".
m From the Variables drawer connect a get global Proximity.

)) updateDatal abel
(T8 LabelData ~ M Text ~ RGBSR EN < BB Distance: J

" . global Proximity ~

Finally, we need to call the procedure when this data is received.
e From Arduino101ProximitySensor1 drag when
Ardunio101ProximitySensor1.ProximitySensorDataReceived.
o from the Variables drawer, add set global light.

m Hover over the orange "proximity" in
.ProximityReceived to see the get proximity block.
Drag the get proximity block from this window and snap to
set global Proximity.

m from the Procedures drawer, add call updateDataLabel.

~-hs Arduino101ProximitySensort « Fiaice) gl
-
<o 5T global Proximity + 0 (0 id proximity |

call
-

Your app should now be working! Connect your Arduino device using the MIT
Al2 Companion (if you haven't already). Test it out by moving your hand closer
and farther away from the sensor. If it is working, you should see the data label
change.

Scan Stop Scan Connect ‘Disconnect
\ | | | J

Status: Connected

Distance: 56

