
This tutorial will help you get started with building an App that connects and
respond to the physical world - often termed the Internet of Things or "IoT".

In this project we're going to learn how to build an app that connects to a
microcontroller called Arduino 101 via Bluetooth. You can use this equipment to
monitor various conditions (i.e., light, humidity, temperature, moisture) that can
help you track the overall health of a plant. We will also learn how to graph this
data.

We are also using a Seeed Grove shield for this tutorial. You do not need to use
this board, but it does make things easier.

This Build-It tutorial assumes you have a basic understanding of App Inventor. If
this is your first app, you should first complete at least the introductory app Hello
Purr. It is also recommended you do a slightly more advanced app like Paint Pot.

You will first need to set up your Arduino 101 to work with App Inventor by
following the steps found here.

App Inventor + IoT:
Building a Healthy Plant
Monitoring App

90
min

https://www.arduino.cc/en/Main/ArduinoBoard101
https://www.seeedstudio.com/Base-Shield-V2-p-1378.html
http://appinventor.mit.edu/explore/ai2/hellopurr.html
http://appinventor.mit.edu/explore/ai2/hellopurr.html
http://appinventor.mit.edu/explore/ai2/paintpot-part1.html
http://appinventor.mit.edu/explore/ai2/hellopurr.html
http://iot.appinventor.mit.edu/assets/tutorials/MIT_App_Inventor_IoT_Setup.pdf

Let's start by connecting all the sensors we're going to use to our Arduino. For this
project, we are also using a Seeed Grove shield attached to the top of our Arduino.
While the Grove board isn't necessary, it makes things much easier.
We will also need the following components for this tutorial:

● A moisture sensor
● A light sensor
● A humidity sensor (also works as a temperature sensor)
● An RGB LCD Display

We're going to attach 3 sensors (Light, Humidity, and Moisture) and an
RGB LCD Display.

● Attach the Light Sensor to the A1 slot on the Grove board
● Attach the Moisture Sensor to the A2 slot on the Grove board.
● Attach the Humidity Sensor to the D4 slot on the Grove board
● Attach the RGB LCD Display to any of the I2C slots.

Setting up the Arduino

moisture
sensor

humidity
sensor

light
sensor RGB LCD

display

https://www.seeedstudio.com/Base-Shield-V2-p-1378.html
https://www.seeedstudio.com/Grove-Moisture-Sensor-p-955.html
https://www.seeedstudio.com/Grove-Light-Sensor-%28P%29-v1.1-p-2693.html
https://www.seeedstudio.com/Grove-Temp%26Humi-Sensor-p-745.html
https://www.seeedstudio.com/Grove-LCD-RGB-Backlight-p-1643.html

First, we need to make sure we have the correct Arduino code running. Plug in your
Arduino and open the AIM-for-Things-Arduino101.ino file (from the Setup tutorial above).

● For this tutorial make sure LIGHT_SENSOR, MOISTURE_SENSOR, RGBLCD,
and TEMPERATURE are set to ENABLED and all others are set to DISABLED

● You should also click the arrow button in the top left to upload the code

Note: You can set your NAME variable in the code above to something that is
easily identifiable, instead of “App Inventor”. Especially in a classroom where
there might be many bluetooth devices, naming each device will help when
connecting through the app.

Start a new project in App Inventor and name it HealthyPlantMonitor.

First, we need to set up some buttons to find and
connect to our Arduino over Bluetooth.

● Drag a HorizontalArrangement from the Layout
drawer in the Palette and add 4 Buttons to it.

● Rename the buttons: ButtonScan,
ButtonStopScan, ButtonConnect, and
ButtonDisconnect

● Change their text to "Scan", "Stop Scan",
"Connect", and Disconnect"

● Below the Horizontal Arrangement add a Label.
Rename it LabelStatus and change its text to
"Status: "

● Below that add another Label. Rename it
LabelData and change its text to "Data: "

● Below LabelData, add a ListView. Rename it
ListBLE.

Next, we need to install the various extensions we need
for our app.

● Download edu.mit.appinventor.iot.arduino101.aix
and edu.mit.appinventor.ble.aix to your computer.

● For both files, in the Palette, click on Extension at
the bottom and then on "Import extension" and
then "Choose File".

● Find the extensions on your computer and upload
them.

Building the App in App Inventor

http://ai2.appinventor.mit.edu/
http://iot.appinventor.mit.edu/assets/resources/edu.mit.appinventor.iot.arduino101.aix
http://iot.appinventor.mit.edu/assets/resources/edu.mit.appinventor.ble.aix

From the extensions list, add the following extensions to your app by dragging them
onto the Viewer: BluetoothLE, Arduino101LightSensor, Arduino101Moisture,
Arduino101Humidity, and Arduino101RgbLcd

After they are dragged onto the Viewer they will appear below the main screen.
Don't worry if you see an error about integers, we'll fix that in a minute.

Next, we need to let App Inventor know which pins on the Grove board the different
sensors and the LCD screen are connected to.

First, let's set the pin for the Light Sensor
● Click on Arduino101LightSensor1 in the Components pane.
● In the Properties pane, click on BluetoothDevice and select BluetoothLE1. Under

Pin, enter only the number that corresponds to the analog pin the light sensor is
plugged into on the Grove board (in this case A1).

○ Note: You only need to set the number (1) not the letter (A)
● Now, let's do the same thing for the rest of the sensors

○ Click on Arduinio101Moisture1, set its BluetoothDevice to BluetoothLE1
and set its Pin to 2

○ Click on Arduino101Humidity1, set its BluetoothDevice to BluetoothLE1
and set its pin to 4

● For the Ardunio101RgbLcd1 you only have to select the Bluetooth device
(BlutetoothLE1); App Inventor will take care of the rest.

Switch to the Blocks Editor view

We want to set up the app to scan for available Bluetooth devices. To do this, we will use
the ButtonScan button to set the Bluetooth component to start scanning, and change the
status label.

● From ButtonScan in the Blocks pane drag out when ButtonScan.Click
○ from BluetoothLE1 add call BluetoothLE1.StartScanning
○ from LabelStatus add set LabelStatus.Text to

■ From the Text Drawer add a text block and type in "Status: Scanning"

Next, we'll have the app stop scanning and change the status label when we press the
ButtonStopScan

● From ButtonStopScan in the Blocks pane drag out when ButtonStopScan.Click
○ from BluetoothLE1 add call BluetoothLE1.StopScanning
○ from LabelStatus add set LabelStatus.Text to

■ From the Text Drawer add a text block and type in
"Status: Stopped Scanning"

We need to populate the device list with all the available Bluetooth devices
● From the BlueToothLE1 in the Blocks pane drag out when

BluetoothLE1.DeviceFound
○ from ListBLE add set ListBLE.ElementsFromString to

■ From BluetoothLE1 drag out and snap in BluetoothLE1.Devicelist

Next we want to be able to disconnect from the Bluetooth device.
● From the ButtonDisconnect in the Blocks pane drag out

when ButtonDisconnect.Click
○ From the BluetoothLE1 Drawer add call BluetoothLE1.Disconnect

Now we need to have our App connect to the Arduino over Bluetooth, along with all
of our sensor extensions.

● From ButtonConnect in the Blocks pane drag out when ButtonConnect.Click
○ From the BluetoothLE1 Drawer add call BluetoothLE1.Connect index

■ From BluetoothLE1 drag out and connect ListBLE.SelectionIndex
(This sets the Bluetooth device to the one picked from the list.)

We also want to let the user know we are trying to connect to the device.
○ From LabelStatus drag out set LabelStatus Text to

■ From the Text Drawer add a text block and type in
"Status: Connecting"

We also want to know when the Bluetooth device successfully disconnects (to know
pressing the button above worked)

● From BluetoothLE1 in the Blocks pane drag out
when BluetoothLE1.Disconnected

○ from LabelStatus add set LabelStatus.Text to
○ From the Text Drawer add a text block and type in "Status: Disconnected"

Next we want to set it up to request data updates when the values for each of our
sensors on the Arduino changes.

● From the BluetoothLE1 in the Blocks pane drag out
when BluetoothLE1.Connected

○ from Arduino101LightSensor1 add
call Arduino101LightSensor1.RequestLightSensorUpdates

○ from Arduino101Humidity1 add
call Arduino101Humidity1.RequestHumidityUpdates

○ from Arduino101Humidity1 add
call Arduino101Humidity1.RequestTemperatureUpdates

○ from Arduino101Moisture1 add
■ call Arduino101Moisture1.RequestMoistureUpdates

Let's also send a message to the Arduino's LCD to make sure it is working.
○ from Arduino101RGBLcd1 add

call Arduino101RGBLcd1.SetText
● From the Text Drawer add a text block and type in

"Hello Plant"
○ from Arduino101RGBLcd1 add

call Arduino101RGBLcd1.SetBackgroundColor color
● From the Color drawer add the Green block

○ from LabelStatus add set LabelStatus.Text to
● From the Text drawer add a text block and type in

"Status: Connected"

Let's make a new procedure to display the current readings in the LabelData. You
can create a procedure by dragging out a purple procedure block from the
Procedures Drawer in the Blocks pane. Let's rename it updateDataLabel

● From the LabelData Drawer add set LabelData.Text to
○ From the Text Drawer connect a join block.

Now we need to store the data we receive from each of the sensors.
● From Variables drawer drag four initialize global name to blocks and name

them light, moisture, temperature, and humidity.
○ set each one to a value of 0

You'll notice that the join only has two
slots at first and we have 8 items! This is
an easy fix. In the Join block you'll see
a blue gear, click on it and a new
window appears.

Then drag the string block on the left
side under the string blocks inside the
join. This will add a new slot. Do this 6
times in total.

○ Add the following blocks to the join (for some of them it might be easier
to copy and paste than to type them yourself):

■ from the Text Drawer add a text block and type in "Humidity: "
■ from the Variables Drawer add a block get global humidity
■ from the Text Drawer add a text block and type in

"% Temperature: "
■ from the Variables Drawer add a block get global temperature
■ from the Text Drawer add a text block and type in "ºC\nLight: "
■ from the Variables Drawer add a block get global light
■ from the Text Drawer add a text block and type in "\nMoisture: "
■ from the Variables Drawer add a block get global moisture

● From Arduino101LightSensor1 drag
when Ardunio101LightSensor1.LightSensorDataReceived

● from Variables add
set global light to

○ hover over the orange
"reading" in the
.LightSensorDataReceived
block to see the get reading block.

○ Drag the get reading block from this window
and snap to set global light to

● from Procedures add call updateDataLabel

Once we're done, the
final procedure
should look like this:

● From Arduino101Humidity1 drag
when Ardunio101Humidity1
.HumidityReceived

○ from Variables add set global
humidity

○ hover over the orange
“humidity” to see get humidity

Next, we want to update the labels when we receive data from the sensors.

○ drag the get humidity block and snap to set global humidity to
○ from Procedures add call updateDataLabel

● From Arduino101Moisture1 drag
when Ardunio101Moisture1
.MoistureDataReceived

○ from Variables add
set global moisture to

○ hover over “moisture” to see
the get moisture block

If you haven't already, now would be a good time to
test out your app using the MIT AI2 companion.
Once you've connected your device and run the
Arduino .ino code, test the app using the following
steps:

● Click the Scan button
○ You should see a list of BLE Devices

● When you see your device click Stop Scan
● Click on your device name in the list
● Click Connect

○ If your device successfully connects
your LabelStatus should change to
"Status: Connected".

● If everything works you should see the data
changing for all the different sensors.

○ Try covering the light sensor, holding
the humidity sensor in your hand, or
getting the moisture sensor wet and see
if the values change.

● From Arduino101Humidity1 drag
when Ardunio101Humidity1
.TemperatureReceived

○ from Variables add
set global temperature to

○ hover over “temperature” to see
the get temperature block

○ drag the get temperature block and snap to set global temperature to
○ from Procedures add call updateDataLabel

○ drag the get moisture block and snap to set global moisture to
○ from Procedures add call updateDataLabel

Switch to the Designer view

Now let's make it look nicer by adding some colorful bars to graph some of our data.

We need to create the area for the bar graphs.
● Drag a HorizontalArrangement from the Palette and place it below ListBLE

○ Set its properties as follows:
■ AlignVertical: Bottom: 3
■ Height: 200px
■ Width: Fill parent

○ Add 3 VerticalArrangements inside the HorizontalArrangement and
rename them LightBar, TemperatureBar, MoistureBar

○ Set each VerticalArrangement's height to 0px and width to Fill Parent
■ Now set LightBar BackgroundColor to Yellow, TemperatureBar

BackgroundColor to Red, and MoistureBar BackgroundColor to
Blue

Let's create a legend so we know what each bar represents.
● Drag a HorizontalArrangement from the Palette and place it below

HorizonalArrangement2
○ Leave its Height at Automatic and set its Width to Fill parent
○ From the User Interface Palette, drag 3 Image components onto the

Horizontal Arrangement, and rename them "ImageLight",
"ImageTemperature", and "ImageMoisture"

■ Set each Image's properties to:
● Height to 30px and Width to Fill Parent

Now we want to add the images for the legend.
● Download the following 3 pictures to your computer:

○ Sunlight, Thermometer, and WaterDrop
● Under the Properties pane for ImageLight, click on

Picture.
○ In the pop-up window click on "Upload File…"
○ Find the Sunlight image on your computer and

upload it
○ Repeat this process for ImageTemperature

and ImageMoisture

https://www.dropbox.com/s/654s30gzxyr5kch/Sunlight.png?dl=0
https://www.dropbox.com/s/wfxuxj2va7yfngl/Thermometer.png?dl=0
https://www.dropbox.com/s/9pznxg44tb5l6zx/WaterDrop.png?dl=0
https://www.dropbox.com/s/654s30gzxyr5kch/Sunlight.png?dl=0

Let's set up a space so that our plant can "talk" to us based on its status.
● Drag a HorizontalArrangement from the Palette and place it below

HorizontalArragement3
○ Set its AlignVertical to Center: 2, Height to 130px,

and Width to Fill parent
○ Download the PottedPlant picture to your computer and then Upload it to

the project
■ Drag an Image component onto HorizontalArrangement4, and set

its picture to the Potted Plant picture.
■ Rename the Image "ImagePlant"
■ Set its Height to 70px and Width to 70px

○ Drag a Label to the right of ImagePlant, rename it "LabelPlantSpeak"
and change its text to "I need light and water to grow!"

NOTE: If HorizontalArrangement4 is off the screen, try hiding HorizontalArragement2
temporarily by clicking the Visible button in HorizontalArragement2's Properties pane.

https://www.dropbox.com/s/h8b1d1gf6wagqal/PottedPlant.png?dl=0

Switch to the Blocks Editor view
To update the graph as we get data, we're going change the last 3 groups of blocks
we made. By setting the height of each of the vertical arrangements, we can create
bars reflecting the sensor values by their change in size.

● Take a look at the code below and add the extra blocks.
○ Note: get reading, get temperature, and get moisture are gotten by

hovering over the input parameter, not from the Variables drawer

Finally, we should hide and show ListBLE depending on if we need to see it or not.

● To when ButtonScan.Click add set ListBLE.Visible to true
● To when BluetoothLE1.Connected add set ListBLE.Visible to false

Now try out your app using the MIT AI2 companion - when the sensor data
changes, the bar graphs should also go up and down.

A few other things you could do to enhance your app!

● Using "if" statements, change the LabelPlantSpeak depending on the plant's
conditions (e.g., too hot, too dry, when it is watered).

● You could also send or receive messages to the LCD.

● Or, change the colors of the graph bars when the conditions change.

This is just one example of how App Inventor + IoT can work together to help us
understand, and change, our everyday lives. If you come up with more, be sure to
share them with us! You can reach us by emailing appinventor@mit.edu . Enjoy!

mailto:appinventor@mit.edu

